Sunday, October 27, 2019

26歲生日



內政部統計 台灣男性平均壽命77.3歲 吾人來到這五濁惡世 剛滿26年 1/3過去了
世俗的 財色名食睡 沒有得到多少
脫塵的 理論物理 數學 大道 也沒有得到多少

我國中還以為自己很屌 還是想起 艋舺 鈕承澤台詞: 風往哪裡吹 草就要往哪裡倒 年轻时候我也曾經以为自己是风 可是最后遍体鳞伤 才知道我们都只是草~~~~~


記得國高中許願 每年一定有一個願望 希望自己越來越聰明
我如今許願 期望有天 我放下 從國三畢業開始算這十幾年
那些 其他願望 看要發文章 再信義區開超跑 把妹 都不要了不用了 反正追不到實現不了 換來一堆苦

我只剩一個願望 只求 能有一杯奶茶 一場麻辣鍋 鬼島捷運 快樂拍一場活動 好好地窩在大同區活著 如果還有其他可能 找個地方躲起來 讓生活 一切回到國中考基測前 回到我開始認真讀書以前

Outline 二階微分方程 2nd second order differential equation

Outline 二階微分方程 2nd second order differential equation:

記得年輕時候 學2nd second order differential equation
有一堆怪招
但長大之後都忘了
最近看了一下
發現整個過程 就分成三步驟

第一  要先得到一個homogenous解
這個解可以用很多做法得到
但最general 可以用 Fuch's theorem 證明
級數解 至少可以找到其中一個solution




第二 當你知道一個答案時候 你可以得到第二個答案 這個是 Wronskian DOuble formula

證明如下:








所以大功告成
現在給你一個2nd ode 微分方程 你至少可以得到 兩個homogenous的解



之後就是研究 non homogenous解要怎樣得到
最神奇的事情是
只要把通解前面的係數換掉 就可以得到特解


這就是第三步驟

所以follow這三步驟
所有  2nd second order differential equation
都可以逐步解出












Poincare index theorem

Poincare index theorem: 




量子異常霍爾效應

量子異常霍爾效應是異常霍爾效應的“量子”版本。儘管異常霍爾效應需要結合磁極化和自旋軌道耦合來產生有限的霍爾電壓,即使在沒有外部磁場的情況下(因此稱為“異常”),量子異常霍爾效應仍是其量化形式。霍爾電導率獲取與電導量子的整數倍成正比的量化值


,並且在這方麵類似於量子霍爾效應。這裡的整數等於由材料能帶結構的拓撲特性引起的chern number。這些效應在稱為量子異常霍爾絕緣體(也稱為Chern絕緣體)的系統中觀察到。[1]2013年,由清華大學的薛其坤領導的研究小組首次通過實驗觀察到了這種效果。[2]



普林斯頓大學的鄧肯·霍爾丹(Duncan Haldane)將教我們一個有趣的二維玩具模型,他於1988年推出了這種玩具模型,該模型已成為異常量子霍爾效應的原型。


石墨烯中的狄拉克錐在上一章中,我們看到瞭如何通過交換一維繫統來獲得量子霍爾態。最後,我們的方法是首先獲得一個狄拉克錐,在其上添加一個質量項 ,最後使該質量發生變化。按照此配方,我們無需施加外部磁場即可獲得手性邊緣態。
有一個具有狄拉克錐的真實(而且非常重要)的二維繫統:石墨烯。因此,在本章中,我們將採用石墨烯連接其本身俱有手性邊緣態的失真係統。
它是一個三角形晶格,每個晶胞具有兩個原子,類型A和類型B,在圖中用紅色和藍色位點表示:



其中k =(k x,k y)並且

這裡a i是圖中的三個向量,它們連接晶格的最近鄰居[我們將晶格間距設置為1,例如a_1 =(1,0)]。引入作用於亞晶格自由度的一組保利矩陣σ,

石墨烯的離散對稱性在視頻中深入討論了石墨烯的對稱性,因此讓我們對其進行回顧。
正如我們在第一周已經說過的那樣,石墨烯是具有亞晶格對稱性的系統的原型,這使漢密爾頓塊相對於兩個亞晶格偏離對角線。亞晶格對稱性讀取







亞晶格對稱性僅是近似的,這是最近鄰緊密結合模型的結果。就像視頻中提到的反對稱一樣,它可以保護狄拉克點,並且需要替換以形成間隙。和反對稱,蜂窩晶格還具有圍繞晶胞中心的三重旋轉對稱性。這種對稱性對於使狄拉克錐首先出現很重要,但在隨後的所有步驟中都不會起作用。最後,存在時間反轉對稱性,目前該對稱性已完全保留在我們的緊密綁定模型中。由於我們沒有考慮電子的自旋自由度,因此真實空間中的時間反轉對稱算符只是複雜的共軛。在動量空間表示中,時間反轉對稱讀取



重要的是要注意,時間反轉對稱將K發送到K',因此它交換了兩個Dirac錐。
(近似)子晶格和時間反轉對稱性的乘積產生進一步的離散對稱性,即粒子-孔對稱性


使石墨烯成為拓撲

製作石墨烯拓撲讓我們回想一下,我們的目標是使石墨烯片進入具有手性邊緣態的量子霍爾態。必要的第一步是使大部分系統空白。
我們如何才能在石墨烯中填補空白?狄拉克點受子晶格(反演)和時間反轉對稱性的保護。因此,我們可以想到很多方法來在K和K'處打開能隙。







計算如下:





一些 好玩的geometric 圖形

一些 好玩的geometric 圖形
嘗試手畫一下

Sphere

Torus

higher genus surface

Mobius band

Five platonic solid


畫幾次 大家就慢慢懂了 它的結構

Tetrahedron {3, 3} 
Cube {4, 3}
Octahedron {3, 4} 
Dodecahedron {5, 3} 
Icosahedron {3, 5}




Friday, October 25, 2019

介紹兩個 unsupervised learning 演算法 PCA 跟 diffusion map

介紹兩個 unsupervised learning 演算法 PCA 跟 diffusion map

兩者非常像
基本上就是原資料生出某矩陣
計算eigenvalue 跟 eigenvector即可





因為一開始的矩陣決定了你的特徵向量代表的物理意義


只找前幾個的原因是這些算法都在尋找最佳表示法


而線性代數中對角化就是在找對佳表示法


我講最大的區別在哪裡




最大的區別就是PCA在找的最佳表示法是線性的

擴散圖是非線性的


PCA利用的是一般的平移旋轉


diffusion map用的是熱統計的擴散方程的解


它假設一個數據點到另一個數據點用擴散的連過去

Thursday, October 24, 2019

評論: 蘇起:博士不適合當領導人



博士 早就過時 鬼島就是 過去 一堆讀書人 這社會一直不缺想讀書的人 缺的是 可以安分守己 不會整天想贏的人

看看小島 這幾年 網紅 黑道 8+9 藝人 才是正道
反骨男孩 黑男 國棟 童酸酸 孫安佐 博恩etc
連千毅 Kid 富二代 在信義區開超跑 柯震東 葛兆恩 etc


鬼島就是太多人讀書 阿然後咧 還是輸阿 一堆人名嘴政治人物 台北明星國中 高中名校前幾志願 台清交成政醫 美國碩博士
懂小島的恨嗎?

寧可找 曾經醉生夢死過 愛過 恨過 痛過 的人 才知道小島的苦





Wednesday, October 23, 2019

最多不得志的社會



華人大概是 最多不得志的社會 不得志就要寫詩 孟浩然 或是 杜甫
杜甫: 仁人志士莫怨嘆 古來才大難為用 但問題是 為何大家會覺得不得志呢 因為讀書了阿 假如沒讀書 就不會覺得自己有抱負 有才能 應該被他人看見 應該要贏 而不是顛沛流離發廢文 詠物感嘆 所以書讀越多 慾望自然越大 越希望要自己要被他人看見
所以諸葛亮故意三顧茅廬 劉備得以重用他 如果劉備不用他
難道他甘願一輩子南陽耕讀 或是像蘇秦 讀書無蒿 就燒調書洩憤 因為他沒被看到


網路上一堆勵志yt影片 都說人要快樂 就是不要被過去限制
你看雞排博士 他就不說他讀一堆書 怎樣去賣雞排 他要這樣想
那就不能開分店 再娶嬌妻 高學歷網紅之所以少 正因難以放下
讀書 都被書困住 路越來越窄 但人也是因為有執著 才有功力可言

所以台大代理校長才勸勉大家 認真 認錯 認輸 這個認輸 境界太高了 大家要讀書 但不被讀書限制 多少人跟羅狀元一樣 跑到山裡躲起來 管他狀元 這五濁惡世 太可怕

還是那句 知識有毒 識人多時是非多 知事多時煩惱多
知道那麼多幹嘛








Wednesday, October 16, 2019

績優役男有屁用 看看kid 替代役開車違規 騎在同學身上 衣服不好好穿 要怎樣就怎樣

績優役男有屁用?



連很多讀書人 都被 極樂替代役廢武 本來博士改碩士
更何況kid 本來8+9 藝人小島最爽
加上極樂替代役 成了神

KID荒唐服役玩很大 裸下體騎同袍照流出



績優役男有屁用 一堆人好好當出去也是輪班阿
KID 出去照樣當藝人 鬼島藝人最大 一堆妹愛死他了











替代役開車違規 騎在同學身上 衣服不好好穿 要怎樣就怎樣
這就是鬼島啦
董沒 鬼島藝人最大啦 一堆妹愛啦

認真當替代役笑死 我們考老半天 考試 才回台北 結果人家隨便就績優 吃香喝辣 果然 我說的
鬼島 富二代 黑道 網紅 藝人最大



你問我讀書 怎樣:
幹 細漢阿





突然想起 替代役 裡面 大餐課 有個社會學教授 說 大家來成功嶺十幾天 不習慣是正常的 如果有人覺得成功嶺混得不錯 那你要替這種人感到可悲
表示他尚未來之前 不知道身心是何可怕狀態
認識一個台大博士 剛畢業 他在替中跟我說 他之前讀博士
因為大學血統較差 進台大之後被教授 跟很多同學排擠
從早到晚都有人在對付他 他好不容易32歲畢業進去成功嶺 十幾天超爽 這多年第一次覺得爽 我那時感到害怕 這世間真可怕


如今我在練邪之地受苦 再回想 其實 這十多年 真的從國中畢業開始認真讀書考基測以來 最快樂的 就算不是成功嶺
也是替代役 你說浪費時間 是 你說沒賺到啥錢 是
但好似我國小 沒有憂愁 沒有擔心受怕爭鬥 也讓我知道 很多人是怎樣過生活的 替代役雖廢我武功 但也讓我知道武功本空
Respect to 極樂島 和替代役

Tuesday, October 15, 2019

8+9 妹教我的事情

我多年人生座右銘



8+9 妹教我的事情:生活像被強暴 不喜歡只能學習享受


五月天: 這一生一事無成也是個贏家


廣欽老和尚:無來無去無代誌

印光大師 自是不歸歸便得👻島風月有誰爭;

台大代理校長:認真認錯認輸

我: 這裡是寶島外面才是鬼島;

替代役學長:輸是正常贏要感恩


浪流連茄子蛋: 後世人不會再為讀書浪流連


愛恨有窮盡 悔悟臨絕期 生命終求和 雪泥鴻雁去

Thursday, October 10, 2019

Triangulated Category

Triangulated Category

自己做的筆記
先介紹定義


大家可以去維基百科感受一下 : Grothendieck 的數學 太可怕了





Topological Quantum Field theory : 2維的 拓撲場論

Topological Quantum Field theory : 2維的 拓撲場論

接續之前一個維度的







Serre Duality Theorem


一個小note
講幾個應用Serre Duality Theorem
and Riemann Roch Theorem




Monday, October 7, 2019

Topological Quantum Field theory : 1,維的 拓撲場論



Topological Quantum Field theory : 1, 2 維的 拓撲場論


基本上 從cobordism 這個 category 送到 vector space 這個functor 出發


證明

1 dimension TQFT = any finite dimensional vector space
2 dimension TQFT = Frobenius 代數


哀 這世間太苦了







Thursday, October 3, 2019

趕快回大同區躲起來 大火聚



今天和一個中國學生聊天 世界上 很多博士班 為什麼不能 有多少坑 收多少人? 就跟警察大學一樣 預期到未來有多少警察退休 就收多少人 只有多少位子 所以穩定 就跟公務員一樣

但偏偏不這樣 如果把政府當一個人 他拿大家納稅錢 去投資國立大學碩博士 其實根本就沒有這麼多位子 結果這些人轉行跑了 所以這些人浪費他自己人生時間 政府 浪費大家錢 去補助一堆博士 畢業後沒有辦法賺更多錢 繳稅給政府 失敗投資

中國學生 說 這就是練蠱 把一堆蟲關在房子裡面 互相廝殺
贏的就得道 片地黃金 輸了就刀山劍雨 他這一說


我突然醒悟 何止是博士 世界到處有人 就有競爭 大家就要爭位置

基測爭高中 學測爭大學科系 大學搶書卷gpa 研究所推甄搶名額
連他媽 當個替代役考試 背法規 就為了 成績好優先回鄉搶爽單位 海外大家搶老闆 畢業以後搶工作搶教職 本質都一樣 財色名食睡


世間真是大火聚 太可怕 以後趕快回到大同區喝奶茶吃火鍋躲起來

吉他 超越小島 一切



自古神人配吉他... 吉!!!他!!!
記得以前建中很多吉他 他們有很多妹 記得朋友也有一把 吉他 高中大學很瀟灑 浪子回頭
還有李傑老師也有吉他 如今又再一把吉他。

我服了
基因沒不一樣 可 有吉他 這就不一樣
吉他 打敗島上無量鬼怪 無量讀書 無量工作 無量....太多辣








昨天看到 我同學 在紐約大學讀碩士 堂哥 開 twitch 雖然很腦
沒啥人 但我跟他聊天 今天早上 我覺得我頭很痛
我回首過去 外面世界花花綠綠 我到底在幹嘛 咏儒說的對 你心裡想的人生 跟你在一直在做的事情相反
我過去花一堆時間 讀數學 讀很難的東西 結果根本沒啥用
也沒人在意 我跑去寫智障blog 拍智障 youtube
跟替中學長 研究運彩 玩snapask 想讓自己看起來有點用處


其實這些事情 堂哥都做過 堂哥總在我之前 只是他比較不長久我一個project 一做 就是一年 就跟發paper依樣 才玩半年 什麼都沒有 是正常的

道在哪裡 如今竟然遙不可及


Wednesday, October 2, 2019

一直出布



有人些夢太大 一輩子島沒有他的路
有人跟我說: 就好像一輩子 玩剪刀石頭布 結果發現對手只有石頭 你就一直出布 這樣一直贏 無聊死了!

我說: 多少人 一輩子 就在找一個方法 簡單的方法 能賺錢 能贏
你竟然不要! 這個 "一直" 出布 的 "一直" 多"難"啊
你要出布 贏是簡單的 但你要一直出布 要一直贏 是難的


好似小島 認為考某些科系 人生就安穩 或是考某種職業 生活就不用擔心了 你爸媽也是這樣教你的 大家都想在成功的路上 找條不變的路 簡單的路 不用一直學新東西 或傳統的 人有一技之長 好闖天下 也一樣的道理
能"一直" 出布 的 "一直"贏 是大福報人啊

小島沒你的路了

連千毅 鬼島黑道最大



人帥一周尬五女 葛兆恩校花殺手
為廷極樂替代役 連來個後宮之亂

國中最重要古文 鄭板橋 寄弟墨書 士為四林之末 小島 


藝人黑島網紅二代覺青最大 要怎樣就怎樣 讀書是細漢欸



讀書一個都幹不到啦

板橋真的是先知 奈何我國中沒真正看懂









鏡週刊鏡爆頭條》爭風吃醋4女亂鬥連千毅後宮網路駁火








鏡週刊最近三個新聞 太棒
一個子涵 一個泰公 一個Kid
不就是鬼島過最爽三種人嗎?

哈哈 讀書 笑死